Tip Tracking and Shape Sensing for Flexible Surgical Robots

Project Goals As a typical minimally invasive surgery, transoral surgery brings to patients significant benefits such as decreased intra-operative blood loss, less post-operative complication morbidity, shorter hospitalization length and recovery period. Flexible surgical robot (such as tendon/wire/cable-driven robot and concentric tube robot) is an efficient device for transoral inspection and diagnosis. It can work well in complicated and confined environments. … Continue reading

ETH Image Based Visual Servoing to Guide Flexible Robots

Video Demo Eye-To-Hand Image Based Visual Servoing to Guide Flexible Robots Project goals Flexible robots including active cannula or cable driven continuum robots are typically suitable for such minimally invasive surgeries because they are able to present various flexible shapes with great dexterity, which strengthens the ability of collision avoidance and enlarges the reachability of operation tools. Using model based … Continue reading

Nasopharyngeal Carcinoma Surveillance

Project Goals: Nasopharyngeal carcinoma (NPC) is a tumor arising from the epithelial cells that cover the surface and line the nasopharynx. The concern about NPC in our studies is that it is more common in regions in East Asia and Africa, specifically Southeast Asia. Due to the high tendency for NPC to develop into metastatic dissemination, about 30- 60% of … Continue reading

Surgical Tracking Based on Stereo Vision and Depth Sensing

Project Goals: The objective of this research is to incorporate multiple sensors at broad spectrum, including stereo infrared (IR) cameras, color (or RGB) cameras and depth sensors to perceive the surgical environment. Features extracted from each modality can contribute to the cognition of complex surgical environment or procedures. Additionally, their combination can provide higher robustness and accuracy beyond what is … Continue reading

FYP: Surgical Tracking With Multiple Microsoft Kinects

FYP Project Goals The aim of this project is to perform tracking of surgical instruments utilizing the Kinect sensors. With the advances in computing and imaging technologies in the recent years, visual limitations during surgery such as those due to poor depth perception and limited field of view, can be overcome by using computer-assisted systems. 3D models of the patient’s … Continue reading

Statistical Humerus Implants and Associated Intramedullary Robotics

Project Goals The sizes of current off-the-shelf humerus implants are unable to accommodate Asian patients since they are mainly produced for American and European populations according to locally collected data. By creating statistical humerus atlases based on Asian data, gender-specific and region-specific humeral implants can be developed by considering the characteristics of the statistical atlas constructed in order to improve … Continue reading

Ablation Planning in Computer-Assisted Interventions

Project Goals Tumor ablation is the removal of tumor tissue and is considered as one type of minimally invasive interventions. It can be performed using techniques like cryoablation, high-intensity focused ultrasound (HIFU), and radiofrequency ablation (RFA). These techniques rely on minimally invasive principles to ablate tumor tissues, without having to directly expose the target regions to the environment. It has … Continue reading

Planning and Navigation for Percutaneous Ablations

Project Goals Two challenges are mostly clinical concerns in tumor ablation — the size of the tumor and accessibility to the probes. Multiple overlapping ablations need to be planned to cover irregular and oversize tumors through a series of single probe ablations. In the meantime, the planned ablations should be accessible by the needle-based probe and should avoid critical healthy … Continue reading

3D Ultrasound Tracking and Servoing of Tubular Surgical Robots

Collaborators: [Pediatric Cardiac Bioengineering Lab of Children’s Hospital Boston, Harvard Medical School, USA] [Philips Research] Abstract Ultrasound imaging is a useful modality for guiding minimally invasive interventions due to its portability and safety. In cardiac surgery, for example, real-time 3D ultrasound imaging is being investigated for guiding repairs of complex defects inside the beating heart. Substantial difficulty can arise, however, … Continue reading

Surgical Tracking System for Laparoscopic Surgery

Collaborators: ERC-CISST, LCSR Lab of Johns Hopkins University, USA Fraunhofer Germany (FhG) Laparoscopic surgery poses a challenging problem for a real-time intra-body navigation system: how to keep tracking the surgical instruments inside the human body intra-operatively. This project aims to develop surgical tracking technology that is accurate, robust against environmental disturbances, and does not require line-of-sight. The current approach is … Continue reading